
VirtueMart Developer Manual
Soeren Eberhardt(www.virtuemart.net [http://www.virtuemart.net])

Copyright © 2005 Soeren Eberhardt

This document is published under the Open Content License available from
http://www.opencontent.org/opl.shtml [http://www.opencontent.org/opl.shtml]

Revision History
Revision 1.2 December, 1st, 2005 soeren_nb

Inserted the "Developer Guidelines" section
Revision 1.1 November 21, 2005 soeren_nb

Update for VirtueMart
Revision 1.0 June 29, 2005 soeren_nb

Initial Release (mambo-phpShop v1.2 stable-pl3)

Table of Contents
Preambel..1
Introduction ..2

History...2
DifferencestophpShop ...2
JoomlaIntegration..4

Basics..4
DirectoryandFileStructure ...4
MainFlowChart ..6
Core Modules & their Functions, Environment Variables ...7
DatabaseStructure ...10
DatabaseAccess ..11
UserIntegration ...12

ModifyingtheLayout ...13
FindingtherightFile ..13
ModifyingTemplates..13

CreatingormodifyingExtensions ...15
PaymentModules...15
ShippingModules ..18

DeveloperGuidelines..20
General ..20
CodingGuidelines..21
CVSAccess ..24
UsingCVS ...25
Database ..29

AbouttheProject ...29
CVSAccess ..30
Documentation..30
Homepage,Forum..30

Preambel

1

url(http://www.virtuemart.net)
url(http://www.opencontent.org/opl.shtml)

VirtueMart is free Software, licensed under GNU/GPL; VirtueMart [http://www.virtuemart.net]

Conversion to Joomla and much more: © 2005 Sören Eberhardt

The Software 'VirtueMart' is intended for use in Joomla and Mambo (version 4.5.1 and 4.5.2.x). Joomla
or Mambo are required for running VirtueMart.

(Joomla / Mambo is free Software, licensed under GNU/GPL)

The abbrevation VM, which stands for VirtueMart is used in this document.

Introduction

History
VM has its roots in a Shop Script called phpShop. This script was developed by Edikon Corp. and the
phpShop community (see www.phpshop.org [http://www.phpshop.org]).

VM was forked from phpShop version 0.8.0 at the end of the year 2003. It was maintainend and devel-
oped under the name Joomla-phpShop until September 2005. In October 2005it was renamed to Virtue-
Mart.

Differences to phpShop
VM still contains some code parts from phpShop, but experiences phpShop coders will see similarities.

So when you have experience with phpShop or you are to integrate an existing Add-On for phpShop
into VM, you will have to know what is the difference between both scripts.

1. Parameter Renames/Changes

VM has introduced several new parameters and parameter name changes.

page Syntax Change Most important is the change of the page parameter syntax from a
pattern like "shop/index" to "shop.index" just to provide support for Search En-
gine Friendly (SEF) links in your Joomla site. All references to the paramter page
that contain a slash instead of a dot will not be recognized and VM will print out
"module not found" error.

offset Outdated/removed The offset parameter was completely replaced by the parame-
ter "limitstart", which is Joomla standard for page navigation. Although there's a
global workaround to fill $offset with the value of $limitstart it's not recom-
mended to work with offset.

limitstart The limitstart parameter is the replacement for offset and can be used just like
this.

VirtueMart Developer Manual

2

url(http://www.virtuemart.net)
url(http://www.phpshop.org)

Itemid This parameter is new and not VM-specific. It's a mandatory parameter that tells
Joomla, which Menu Item is selected and active, so the pathway can be written
correctly (Home -> Online-Shop) and modules which shall only be shown on spe-
cific pages are hidden/shown.

2. Database Interface

phpShop has its own database class: ps_DB, in a file called db_mysql.inc. This database class has
been completely modified to be a wrapper class for the Joomla Standard Database Class 'database'.
The new filename is ps_database.php. The class name is still ps_DB, but its a Child Class of
the Joomla database class (class ps_DB extends database) and inherits all methods and properties.
This has a lot of advantages: the class is safe against Joomla database class changes and it provides
backward compatibility for the masses of database calls and queries in the scripts (which don't use
the Joomla functions, but the phpShop functions!). VM doesn't connect to the database, but it uses
the connection Joomla has built up. This is for optimal performance since VM doesn't connect to
the database each time a query is to be run.

3. Database Structure

Table names have changed and got a prefix!! Use #__{vm}_tablename instead of tablename.
The #__ stands for the dynamic Joomla table name prefix. The {vm} stands for the dynamic table
name prefix of VM which allows to have more than one shop in one database.

The database structure of phpShop had to be changed, because Joomla provides an excellent frame-
work with session handling and user management. The following tables have been removed:

• auth_user_md5 (jos_users stores passwords)

• intershipper

• language

• sessions
There have been added several tables: jos_pshop_affiliate, jos_vm_affiliate_sale,
jos_vm_creditcard, jos_vm_manufacturer, jos_vm_manufacturer_category,
jos_vm_product_download, jos_vm_product_mf_xref, jos_vm_product_reviews,
jos_vm_product_votes, jos_vm_shipping_carrier, jos_vm_shipping_rate, jos_vm_visit,
jos_vm_waiting_list, jos_vm_zone_shipping.

4. Session handling

Joomla provides a framework with session handling - no need to have an own session class! No
hidden_session() calls are needed anymore. The existing session class has become the global link
formatter! The functions url and purl are needed to format links SEF or append the Itemid parame-
ter.

5. Separation into component and modules

A Joomla site consists of various elements like components, modules, templates and Mambots -
most likely you will know components, modules and templates. A Component is the Main Part of
the Page in the "Main Body". Can be installed/uninstalled trough the Component Manager and
have their own configuration/interface. Modules are sideblocks surrounding the Main body. They
can be installed/uninstalled and configured using the Module Manager. The Main application
"VirtueMart" is run in the component part. The Component contains all core files. The module
"mod_virtuemart" was written to provide all important links so the component can be controlled:
Category links, Mini-Cart, Product Search Form, Account Maintenance, Admin.

VirtueMart Developer Manual

3

Joomla Integration
The Joomla Integration of VM is very special, because of its origin. It doesn't completely comply to
Joomla's Component Coding Standards. VM uses some own functions for database access, page naviga-
tion, search and listings. By using old code from phpShop, this little bit of compatiblity can be main-
tained (so one can integrate extensions written for phpShop).

Basics

Directory and File Structure
VM holds most of its files in the /administrator part of Joomla. The only files stored in the /
components part of a Joomla site are those, which must be accessible from the Frontend of a Joomla
site, even when the Administrator part is secured by htaccess files.

/administrator/components/com_virtuemart/
Contains file for the administration interface of VM. Because the
administrative interface is also accessible from the frontend, those
files are not restricted to the Joomla Coding Standards. Important
files:

• header.php (Code for the Drop-Down Menu of the admin-
istration)

• virtuemart.cfg.php (central Configuration File)

• toolbar.phpshop.html.php (controls the administra-
tive Toolbar)

/administrator/components/com_virtuemart/classes/
Holds all the core classes which are used by VM Important:

• ps_database.php (wrapper for Joomla's database object
$database)

• ps_cart.php (controls the cart contents)

• ps_main.php (not a class, contains central functions, e.g.
for image upload)

• ps_session.php (basic session management, URL for-
matting)

/administrator/components/com_virtuemart/classes/Log/Contains a slightly modified version of PEAR's Log class

/administrator/components/com_virtuemart/classes/shipping/
Contains Shipping Modules & their informational Files

/administrator/components/com_virtuemart/classes/payment/
Contains Payment Modules & their informational Files

/administrator/components/com_virtuemart/classes/pdf/
Contains the classes of the HTML2FPDF Package (see source-
forge.net/projects/html2fpdf

VirtueMart Developer Manual

4

url(http://sourceforge.net/projects/html2fpdf)
url(http://sourceforge.net/projects/html2fpdf)

[http://sourceforge.net/projects/html2fpdf])

/administrator/components/com_virtuemart/classes/phpInputFilter/contains the phpinputfilter class for VirtueMart

/administrator/components/com_virtuemart/classes/phpmailer/
Contains the classes of the phpMailer Package (also used by
Joomla and Mambo) - see phpmailer.sourceforge.net/
[http://phpmailer.sourceforge.net/].

/administrator/components/com_virtuemart/html/
Holds files which are used for presentation of HTML Code.

They are ordered by shop core module name (e.g. check-
out.*.php for the core module checkout)

Important files:

• basket.php (controls the Cart)

• ro_basket.php (controls the Cart on the last step of
checkout, ro = read only)

/administrator/components/com_virtuemart/html/templates/
Contains Templates for some pages

../basket Templates for Cart Display.

../browse Templates for Product Listing Pages
(can be assigned in the Category
Form)

../order_emails Templates for the Order Confirma-
tion Email

../product_details Templates for the Product Details
Pages.

/administrator/components/com_virtuemart/languages/
Contains the Language Files which are included from virtue-
mart_parser.php.

/administrator/components/com_virtuemart/sql/
Holds SQL Dump Files for building up the structure for the tables
used by VirtueMart.

/components/com_virtuemart/
Holds the files wich are used to control the call of the Shop from
the Frontend.

Important files:

• virtuemart.php (the file included by Joomla on a call to
index.php?option=com_virtuemart&....)

VirtueMart Developer Manual

5

url(http://phpmailer.sourceforge.net/)

• virtuemart_parser.php (the central file for VM, pre-
pares the session, authentication, cart & runs functions)

• show_image_in_imgtag.php (used to display dynami-
cally resized images - using the class.img2thumb.php)

/components/com_virtuemart/css/
Contains the shop's css file (shop.css) and css styles needed
for the frontend administratin (admin.css)

/components/com_virtuemart/js/
Contains Javascripts (WebFX – Tabs, JSCookTree and the IE-
PNG-Transpareny Fix)

/components/com_virtuemart/shop_image/

/availability Contains images for displaying the avail-
ability of a product.

Tip

All images in this folder are automatically parsed and displayed in the product form for selec-
tion as the availability image for a product - so just copy them here.

/category Contains images for categories

/product Contains Product Images + resized product
images

/ps_image Images for the administrative interface

/vendor Vendor Logos

Main Flow Chart

Joomla Part

Joomla uses the variable option to load a specific component. This variable must have the value
"com_virtuemart" to load VM. Called on the Frontend, Joomla searches the directory /components
for a directory called com_virtuemart and a file called virtuemart.php in it.

When called in the backend, Joomla searches the directory /administrator/components for a
directory called com_virtuemart and a file called admin.phpshop.php in it.

If found, the file is included.

Shop Part

When the Shop is loaded, one of the first things is to load the file virtuemart_parser.php using
the require_once command. It makes core interactions like the Joomla.php file /mainframe class and af-
ter that looks for a variable called page (can be passed by GET or POST).

The page variable consists of the pagename and the core module name:

VirtueMart Developer Manual

6

shop.browse => shop is the name of the shop core module and browse is the name of the page.

Tip

Core modules are listed in the table mos_vm_modules.

Calling index.php?com_virtuemart&page=shop.browse in your Joomla site would let VM
include the file

/administrator/components/com_virtuemart/html/shop.browse.php.

Core Modules & their Functions, Environment Variables

Core Modules

In order to ease with which new features can be added to mp, the concept of using modules has been in-
troduced. A module defines a feature set of VM by providing class files and html layouts related to that
particular module. It is very important to understand how modules work since everything, including the
shop, is a module.

Each module is defined and set in the VM module register. The module definition form allows the site
administrator to define the information for each module, e.g. the module name, the perms of this module
and its description.

You can reach the module list in the administrative interface using "Admin" => "List Modules".

Example: The core module "product" is one entry in the table mos_vm_module. Its pages must be called
using "..&page=product.". If the user has appropriate permissions, the page is loaded - if not, an er-
ror message is generated.

func

Each core module has a list of functions that can be executed. For example, to add a product into the
system, a function called productAdd exists in the table mos_vm_function.

When you add a product, you pass the hidden variable func with a value of productAdd to the system
(besides all the other form fields).

If the current user has the permissions to execute the function (permissions can be set for each function
separately), the file virtuemart_parser.php looks for the class file name and the function name
mapped in the table mos_vm_function for that specific function name (productAdd). In this case
we get ps_product as the class name and add as the function name.

After having fetched this information, we can start to execute the real function, which is done in this
part of virtuemart_parser.php:

// Load class definition file
require_once(CLASSPATH.$db->f("function_class").".php");

// create an object
$string = "\$" . $func_class . " = new " . $func_class . ";";
eval($string);

// RUN THE FUNCTION

VirtueMart Developer Manual

7

$cmd = "\$ok = \$" . $func_class . "->" . $func_method . "(\$vars);";
eval($cmd);

First, the file ps_product.php is loaded, then an object of the class ps_product is created and the
function add is called on that object. The function returns true on success and false on failure. The
variable $ok stores the function result. All this code is exectuted using the PHP eval command for cre-
ating and executing PHP code on-the-fly.

If you wonder what the variable $vars is: it's just a working copy of the superglobal $_REQUEST Ar-
ray and used as the array $d inside of the functions.

Other important Environment variables

Array $cart The current cart contents. The array has the following structure:

[cart] => Array (
[idx] => 1
[0] => Array (

[quantity] => 1
[product_id] => 10
[description] => Size:big; Power:100W

)
)

In this example, the car contains one product with the quantity of 1, the prod-
uct ID 10 and a description.

The index "idx" is an integer and contains the size of the cart (number of dif-
ferent products in it, regardless of their quantity). This variable is always
available in the global $_SESSION array: $_SESSION['cart'].

Array $auth All the user information in one Array, always available in the global
$_SESSION array.

[auth] => Array (
[show_prices] => 1
[user_id] => 0
[username] => demo
[perms] =>
[first_name] => guest
[last_name] =>
[shopper_group_id] => 5
[shopper_group_discount] => 0.00
[show_price_including_tax] => 1
[default_shopper_group] => 1
[is_registered_customer] =>

)

These are the example settings for an unregistered, not-logged-in user.

ps_session $sess Mainly used to format and print URLs for the Shop.

VirtueMart Developer Manual

8

Logging events with the vmLogger object

VirtueMart allows logging events that occur during the execution of the script. The global variable
$vmLogger, which is used for logging purposes is an object of the class Log_display. This class is
a child class of the Log class, which is a PEAR extension.

Note

You must declare

global $vmLogger;

to be able to use this variable inside of a function.

"Logging" means to log a message to display them to the user. While a function is executed (because its
execution was triggered by the variable $func) in the file virtuemart_parser.php, the events are
buffered. When the function call has ended, the contents of the log are flushed and all messages are dis-
played to the user in the order they were added to the log: first in, first out.

After that implicit flushing is enabled - what means that you can log a message and it is printed into the
HTML code where you call the log function.

Currently the Log_display class used by VM offers 9 log levels:

• System is unusable (PEAR_LOG_EMERG)

• Immediate action required (PEAR_LOG_ALERT)

• Critical conditions (PEAR_LOG_CRIT), formatted by CSS style log_crit

• Error conditions (PEAR_LOG_ERR), formatted by CSS style log_error

• Warning conditions (PEAR_LOG_WARNING), formatted by CSS style log_warning

• Normal but significant (PEAR_LOG_NOTICE)

• Informational (PEAR_LOG_INFO), formatted by CSS style log_info

• Debug-level messages (PEAR_LOG_DEBUG) formatted by CSS style log_debug

• Advice messages (PEAR_LOG_TIP, added for VM), formatted by CSS style log_tip

Please note that Debug log entries are only shown to the user, when DEBUG is enabled by configura-
tion.

To log an event, you can use a special function for each log level:

•
$vmLogger->emerg('My emergency message to the user');

•
$vmLogger->alert('My alarm message to the user');

•

VirtueMart Developer Manual

9

$vmLogger->crit('My critical message to the user');

•
$vmLogger->err('My error message to the user'); // Mainly used to log errors in a function

•
$vmLogger->warning('My warning message to the user'); // Mainly used to trigger warnings

•
$vmLogger->notice('My Notice to the user');

•
$vmLogger->info('My informational message to the user'); // Used to give success messages

•
$vmLogger->debug('My debug message to the user'); // Only displayed when DEBUG is enabled

•
$vmLogger->tip('My advice to the user'); // Used to display Advice messages to the user

Database Structure
As said before, all Tables used for VM begin with the prefix _vm_. VM doesn't use Joomla core tables
for storing data.

Figure 1. Entitiy Relationship Diagram

VirtueMart Developer Manual

10

Database Access

VirtueMart Developer Manual

11

VM uses its own database access class for dealing with the database.

The database class file is

/administrator/components/com_virtuemart/classes/ps_database.php.

This database class extends Joomla's database class (class ps_DB extends database) and provides addi-
tional functions, to be able to use older phpShop code. So this class is just a wrapper class for Joomla's
database object and doesn't open new connections to the database!

• Start a query: call the method query(string $query)

$db->query('SELECT email FROM #__users');

• Get the resulting record set: call method next_record(void):

$db->next_record();

(returns false when no result can be returned or the end of the record set has been reached)

• Fetch the value of an attribute of the record set: method f(string $nameOfTheAttribute
)

$db->f('email');

Alternative: method sf(string $nameOfTheAttribute) returns the value of the at-
tribute specified by $nameOfTheAttribute or - when it's not available - the value of
$vars[$nameOfTheAttribute].

• Print (echo) the value of an attribute of the record set: method p(string
$nameOfTheAttribute)

$db->p('email');

Alternative: method sp(string $nameOfTheAttribute) prints the value of the attribute
specified by $nameOfTheAttribute or - when it's not available - the value of
$vars[$nameOfTheAttribute].

• Get the number of returned records: method num_rows(void).

if($db->num_rows() > 0) { // we have a record set! }

User Integration
VM uses Joomla's user table jos_users for the User Management. Users which are no customers,
have just empty values in their additional customer fields in that table.

There can be users who are no customers, but there can't be customers who are no registered users on

VirtueMart Developer Manual

12

the Joomla Site.

The Shop has an own registration procedure which adds all entries for the additional user fields durch
(assigning the customer to a shopper group, to a vendor...)

• jos_users contains BillTo Address Information

• jos_vm_user_info contains ShipTo Address Information (when the customer has added ShipTo
Addresses)

• jos_vm_order_user_info contains a copy of the BillTo (&ShipTo) Address at the moment
when an order is placed

Modifying the Layout
The most important part of the Layout of your Shop is the Joomla template (Joomlahut.com
[http://mambohut.com/] is a good start)!

Finding the right File
When you want to modify a part of your Shop (that can't be changed in its layout using the Joomla tem-
plate's CSS), you must of course know, which file you have to modify, to create the layout you want.

To quickly find the file, which produces the HTML output you're seeing, you can enable the DEBUG
mode ("Admin" => "Configuration" => "Path & URL" => check "DEBUG?" and save.

After having done that, you will see blue info icons all over the Shop, which show the file name of the
included file on mouseover.

The most changed files are

• .../html/shop.browse (the product listing / category overview)

• .../html/shop.product_details.php (the product detail page / view)

• .../html/shop.index.php (the default Shop Homepage (when the parameter page is omit-
ted))

Modifying Templates
VM doesn't use a template engine (like patTemplate or Smarty) to parse its templates.

Flypage Templates

Flypage (or product details) templates can be found in /html/templates/product_details/.

They are loaded and filled with content in the file /html/shop.product_details.php.

The concept is to define placeholders in the template and replaced them by the real contents on load.
This is done using the PHP function str_replace.

The following placeholders are used:

VirtueMart Developer Manual

13

url(http://mambohut.com/)

./.

Browse Templates

Browse templates define the display of a single product in the product listing. So you can only modify
the contents of the boxes, which are filled with product information in the product listing of a category.
The number of those "boxes" - which are displayed in a single row of the product listing - can be
changed in the Category Form of that category (see Number of Products per row) or globally in the
Shop Configuration (for the case that no category_id is passed to the Shop).

Browse (or product listing) templates can be found in /html/templates/browse/.

They are loaded and filled with content in the file /html/shop.browse.php.

The concept is to define placeholders in the template and replaced them by the real contents on load.
This is done using the PHP function str_replace.

The following placeholders are used:

./.

Order Confirmation Email Templates

Order Confirmaton Email Templates define the layout of the confirmation email that is sent out to a user
after having placed an order.

These Email templates can be found in /html/templates/order_emails/.

They are loaded and filled with content in the file /classes/ps_checkout.php, function
email_receipt().

The concept is to define placeholders in the template and replaced them by the real contents on load.
This is done using the PHP function str_replace.

The following placeholders are used:

./.

Basket Templates

Basket templates control the layout of the basket.

The templates can be found in the directory /html/templates/basket/.

The special about the basket is that there are four different templates: Two for displaying the Cart con-
tent including Tax (basket_b2c.html.php and ro_basket_b2c.html.php) and two for dis-
playing the Cart content without tax (adding it afterwards) - basket_b2b.html.php and
ro_basket_b2b.html.php.

b2c = Business to Customer (prices include tax)

b2b = Business to Business (prices don't include tax)

The basket_ files are included in /html/shop.cart.php, /html/basket.php & /
html/ro_basket.php and in the /html/checkout.index.php except that the ro_basket_
file is displayed on the last step of the checkout (when the cart contents can't be modified any more -
ro_basket = read only basket).

VirtueMart Developer Manual

14

The concept in the basket templates is another one than in the other template files, because loops are
used. So we have a minimum number of PHP statements, which can be easily understood by designers
without much PHP knowledge.

The variables which have been prefilled in /html/basket.php and /html/ro_basket.php are
just printed out in the templates.

Creating or modifying Extensions
Besides core modules, you can also add shipping and payment modules into VM. The concept of both -
shipping and payment modules is to provide an API with a defined specification (similar to an inter-
face), where the modules can plug themselves in. The modules implement the required functions and
thus can communicate with the Shop and give their services.

Payment Modules
There are two general types of payment modules in VM:

• automatic credit card processors which do server-to-server communication before the order is placed
(e.g. authorize.net AIM)

• all other payment methods that do not communicate to a server before the order is placed (PayPal,
Worldpay, all other form-based payment methods, all formless payment methods)

Quick-Create a new payment method

If you have form code for a form-based payment method (most payment providers use this way), you
just need to select "Store" => "Add Payment Method" from the VirtueMart admin drop-down menu.

An empty payment method form opens. Now fill in the details of your payment method like this:

VirtueMart Developer Manual

15

Note

Be sure that you have NOTselected "credit cart payment" or "automatic processor".

On the second tab you must fill your form code (you can use HTML and PHP!) into the text area called
"Payment Extra Info":

VirtueMart Developer Manual

16

Caution

The code inside this form MUST BE VALID! If you use PHP code, check if you have written
correct code that can be parsed!

Digging deeper: The Basics

All payment modules are located in the directory

/administrator/components/com_virtuemart/classes/payment/

and provide two files: the class file and the configuration file.

Example: Module "mynewpayment"

You must have two files called

• ps_mynewpayment.php (including the class ps_mynewpayment)

• ps_mynewpayment.cfg.php (containing all necessary configuration constant definitions)

If the user has chosen to pay using a payment method, which has this class as its processor (entry under
Class Name), the file ps_mynewpayment.php will be included on checkout and its functions will be
used to process the payment details, regardless of the implementation.

The API specification

The following is a list of all methods that must be implemented in a payment module's class file.

string show_configuration(void)
Shows the configuration form for this payment module in the payment method form.

boolean has_configuration(void)
returns true if the payment module can be configured,

false if not

boolean configfile_writeable(void)
returns true if the configuration file for that payment module is writeable,

false if not

boolean configfile_readable(void)
returns true if the configuration file for that payment module is readable,

false if not

void write_configuration(Array)
Stores all configuration values for this payment module in the configuration file.

boolean process_payment(String $order_number, Float $order_total, Array &$d)
This is the main function for all payment modules that use direct connections to a payment
gateway (like authorize.net or eWay XML). This is the place, where the payment details are
validated and captured on success.

Returns true on sucess, false on failure.

VirtueMart Developer Manual

17

float get_payment_rate(Float $subtotal)
This is the function to calculate the fee / discount for this special payment module (so you
can calculate a fee, depending on the order total amount).

Note

IF you are about to change configuration variables: do this in both functions:
show_configuration and write_configuration!

Installing a Payment Module

Since there's no real installer for payment modules, you must copy the two files
ps_mynewpayment.php and ps_mynewpayment.cfg.php into the directory

/administrator/components/com_virtuemart/classes/payment/

first.

After you have done that, you can add a new payment method ("Store" => "Add Payment Method"). It's
important to fill in the correct name for Payment Class Name (in this case: ps_mynewpayment) - here's
the reason why you must give the class file the same name as the class inside the file: the Shop now tries
to include a file called "ps_mynewpayment.php" on Saving the payment method.

When you now re-open the newly created payment method, you have access to the configuration form.

Shipping Modules

The Basics

Shipping modules are located in the directory

/administrator/components/com_virtuemart/classes/shipping/

and have three files: the class file, the information file and the configuration file.

Example: Module "myShipping"

You must have three files, called

• myShipping.php (including the class myShipping)

• myShipping.ini (containing the Name of the Module & the Author and the File Version..)

• myShipping.cfg.php (containing all necessary configuration constant definitions)

When activated in the Shop configuration, this payment module will be loaded on the shipping method
selection screen, beside all other activated shipping modules.

The shipping rate, a user has selected during checkout is passed from step to step by the parameter ship-
ping_rate_id.

This parameter follows a strcit syntax and must be a string build like this:

VirtueMart Developer Manual

18

ShippingClassName|carrier_name|rate_name|totalshippingcosts|rate_id

For our example the shipping rate id for one rate could be:

myShipping|My Carrier|My Rate Name|45.00

The last field (rate_id) can be left empty. The shipping_rate_id parameter is always passed as an urlen-
coded string.

The Shipping API specification

The following is a list of all methods that must be implemented by a shipping module's class file.

string list_rates(Array $d)
Lists all available shipping rates.

Tip

The array $d contains the values for the cart total weight ($d['weight']) and the ID for the
shipping address the user has selected ($d['ship_to_info_id']). The ship_to_info_id
refers to the field user_info_id in the tables mos_users OR mos_vm_user_info. Check both for
a matching entry!

float get_rate(Array $d)
Returns the amount for the selected shipping rate by analyzing the parameter ship-
ping_rate_id.

float get_tax_rate(Array $d)
Returns the tax rate for this shipping module (e.g. 0.16).

boolean validate(Array $d)
Validates the value for the parameter shipping_rate_id usually using isset(
$_SESSION[$shipping_rate_id]).

Assumes you have set the value in the function list_rates for each returned shipping rate.

void write_configuration(Array)
Stores all configuration values for this shipping module in the configuration file.

string show_configuration(void)
Shows the configuration form for this shipping module in the shipping module form.

boolean configfile_writeable(void)
returns true if the configuration file for that module is writeable, false if not

Note

Please always change configuration variables in both functions: show_configuration and
write_configuration!

Installing a Shipping Module

Shipping modules also can't be automatically installed, but you must copy the three files mentioned
above into the directory

VirtueMart Developer Manual

19

/administrator/components/com_virtuemart/classes/shipping/.

After having done that, you must go to the Shop Configuration, where your new shipping module will
be automatically recognized (by reading its ini - File) and presented to you as an additional shipping
method under the Tab "Shipping".

You can now select it and save the Configuration.

Developer Guidelines
General

Using and updating the Changelog

The file CHANGELOG.txt contains the Changelog for the recent Major version of VirtueMart. For ev-
ery change you make to the source code you must make an entry to that Changelog.

Please use the date, your CVS username and the following characters to indicate a modification:

-> Bug Fix
+ -> Addition
! -> Change
- -> Removed
! -> Note

An example entry could like like this:

06-09-2005 soeren
^ changed this and that
fixed bug no. 75 [Bug desription]
+ added feature from request no. 56 [feature description]

Please keep your descriptions as readable as possible. A lot of people are following the changes and are
interested in understanding all changes and their consequences.

If you had to make a change to the database schema, please indicate those changes with extra emphasis.
Because you're not the only one working on a development version, please add all queries which are
necessary to update a database to comply with your changes.

^ ## Database structure changed ##
ALTER TABLE mos_pshop_order_user_info ADD `extra_field_1` varchar(255) default NULL;

Please read the section „Database“ for all notes about the database and its scheme.

Compatibility

PHP version compatibility

All PHP code written must be compatible down to PHP version 4.2.0.

VirtueMart Developer Manual

20

MySQL version compatibility

As there is no „real“ database abstraction in Mambo, we keep compatibility to MySQL.

All SQL queries must be compatible with at least MySQL version 3.23.

Mambo version compatibility

Future versions of VirtueMart will support Mambo versions from 4.5.1a until 4.5.3. It's allowed to copy
functionality from a later Mambo version into VirtueMart's ps_main file to maintain compatibility.
Compatibility to Mambo 4.5. 1.0.x is not supported.

On the other hand, it is necessary to stay up-to-date with Joomla!. Mambo and Joomla will be developed
in two different directions. This process will someday lead to the effect that components written for
Joomla, won't work on a Mambo 4.5.3 (or higher). VirtueMart will keep track with the Joomla devel-
opment.

Accessibility

Javascript

Javascript can be used in the frontend (is NO problem at all in the backend and for all administration
pages).

But in the frontend all functionality that is used by a customer must also work with Javascript disabled!
This includes Javascript-based category trees (always also include a <noscript>Non JS code</noscript>
section for people who have disabled Javascript).

Coding Guidelines

Register Globals is Off

• All code must work with PHP register_globals = Off.

Single Quotes vs. Double Quotes

• Use single quotes to refer to an index between brackets of an array (ex: $foo['name'] and not
$foo[name] or $foo["name"])

• Use single quotes instead of double quotes as much as possible because it's faster to parse.

Line Spacing

• Indent using 4 spaces or a tab

CVS Info

• $Id Tag inside the heading comment

VirtueMart Developer Manual

21

Example: /* $Id: */

• CVS will automatically fill this header tag with valid informaiton

Variable Settings

• Always run Mambo/Joomla! and PHP will full Error Reporting Level (E_ALL). You can change this
level in the global configuration (see „Server“ => Error Reporting Level) and in your PHP.ini.

• Always initialize variables. (just $a=0 is initialization)

• Use isset($var) to check if a variable has been set. Use empty($var) to check if Array indexes have
been set or are empty.

PHP Code Tags

• Always use <?php ?> to delimit PHP code, not the <? ?> shorthand. This is required for PEAR
compliance and is also the most portable way to include PHP code on differing operating systems
and setups.

Header Comment Blocks

All source code files in the repository shall contain a "page-level" docblock at the top of each file and a
"class-level" docblock immediately above each class. Below are examples of such docblocks.

<?php

/**
* Short description for file
*
* Long description for file (if any)...
*
*
* @package VirtueMart
* @subpackage classes_product
* @author Original Author <author@example.com>
* @author Another Author <another@example.com>
* @copyright 2004-2005 VirtueMart Developer Team
* @license http://www.gnu.org/copyleft/gpl.html GNU/GPL
* @version CVS: $Id:$
*/

/*
* Place includes, constant defines and $_GLOBAL settings here.
* Make sure they have appropriate docblocks to avoid phpDocumentor
* construing they are documented by the page-level docblock.
*/

/**
* Short description for class
*
* Long description for class (if any)...
*

VirtueMart Developer Manual

22

* @author Original Author <author@example.com>
* @author Another Author <another@example.com>
* @copyright 2004-2005 VirtueMart Developer Team
* @license http://www.gnu.org/copyleft/gpl.html GNU/GPL
* @version Release:
*/
class foo {

/** @var database Internal database class pointer */
var $_db=null;
/** @var object An object of configuration variables */
var $_config=null;
/** @var object An object of path variables */
var $_path=null;
/** @var mosSession The current session */
var $_session=null;
/** @var string The current template */
var $_template=null;
/** @var array An array to hold global user state within a session */

/**
* This function does something special.
* @since VirtueMart 1.0.1
* @param string The name of the product
* @param int The ID of the product
* @return string HTML Table with a "snapshot" of the product
*/
function myFunction($arg1, &$arg2) {

}
}

?>

Required Tags That Have Variable Content

Short Descriptions

Short descriptions must be provided for all docblocks. They should be a quick sentence, not the name of
the item, but the description of the „what does this file / class?“.

@license

VirtueMart is released under the GNU/GPL license. You should keep this license for best compatibility.

* @license http://www.gnu.org/copyleft/gpl.html GNU/GPL

@author

There's no hard rule to determine when a new code contributor should be added to the list of authors for
a given source file. In general, their changes should fall into the "substantial" category (meaning some-
where around 10% to 20% of code changes). Exceptions could be made for rewriting functions or con-
tributing new logic.

Simple code reorganization or bug fixes would not justify the addition of a new individual to the list of
authors.

Optional Tags

VirtueMart Developer Manual

23

@copyright

Feel free to apply whatever copyrights you desire. When formatting this tag, the year should be in four
digit format and if a span of years is involved, use a hyphen between the earliest and latest year. The
copyright holder can be you, a list of people, a company, the PHP Group, etc. Examples:

* @copyright 2003 John Doe and Jennifer Buck
* @copyright 2001-2004 John Doe
* @copyright 2005 XYZ Corporation

Order and Spacing

To ease long term readability of source code, the text and tags must conform to the order and spacing
provided in the example above. This standard is adopted from the JavaDoc standard.

CVS Access

mambo-phpShop Source Code

This project has its CVS repository on the sourceforge.net CVS Server. You can checkout the module
virtuemart from cvs.sourceforge.net. In order to obtain the source anonymously (read only) you
need to know the following:

Connection Type: pserver
CVS Server: cvs.sourceforge.net
CVSROOT: /cvsroot/virtuemart
Module Name: virtuemart
User: anonymous (no password required)

Warning

The CVS server is case-sensitive. Fill in the details in your CVS Program (e.g.
www.tortoisecvs.org [http://www.tortoisecvs.org] for Windows) just as they are provided here.

Documentation Sources

The mambo-phpShop Project manages its documentation in the DocBook format. You can checkout the
sources in the DocBook format and transform the DocBook source using an XSL Transformer into PDF,
HTML, CHM or whatever else... All you have to do is checkout the module documentation from
cvs.sourceforge.net.

Connection Type: pserver
CVS Server: cvs.sourceforge.net
CVSROOT: /cvsroot/virtuemart
Module Name: documentation
User: anonymous (no password required)

Warning

The CVS server is case-sensitive. Fill in the details in your CVS Program (e.g.
www.tortoisecvs.org [http://www.tortoisecvs.org] for Windows) just as they are provided here.

VirtueMart Developer Manual

24

url(http://www.tortoisecvs.org)
url(http://www.tortoisecvs.org)

Using CVS

Basic points

This section describes things that are generally applicable when using CVS; guidelines that are more
specific to particular tasks or uses are described in the other sections.

When to check in

Check in early, check in often. When you have made a change that works, check it in. Check in separate
changes in separate commits (as much as possible). Don't be shy to check in work-in-progress, so long
as it is minimally functional, or at least compilable without errors.

Commit messages

Use meaningful commit messages. Explain what bug the commit fixes, or what features it adds. Don't be
too concise: "fixed typo" is too short; "fixed typo in error message" or "fixed typo in function name" is
OK. The aim is to make it easier to find the desired change easily from just the commit messages (e.g.
presented by cvsweb [http://cvs.eng.demon.net/cvsweb.cgi]).

The converse of this is including too much information. CVS automatically maintains information like
the date and time of the commit, who made the commit, what code was changed, etc. You don't need to
include it in the commit message yourself.

Using tags

If in doubt, lay down a tag. Tags are useful for pinning down a particular version of the code, e.g. one
that is being run in service, or just before a big change or import. They are also used to identify
branches. Tag names should be short and meaningful, like variable names. For example, virtue-
mart-20051222, pre-new-virtuemart, fanf-patches, corresponding to the uses mentioned
above. Tags should be commented in the modules file.

The modules file

Comment the modules file. It defines the modules in the repository, which in the simplest case are just
aliases for a directories in the repository. CVS can also combine several directories that together form a
module. For each module in the file there should be a comment describing the contents of the module,
when it was created and who by, and a description of the tags and branches used by the module. (Tags
don't get commit messages of their own, hence the latter requirement.)

Code

Most of the guidelines in this section are common sense, but it's worth while re-iterating them in the
context of CVS because it has implications that might not be immediately obvious.

Never reformat code

Never, ever reformat code. This is a really bad thing to do because it makes diffs hard to understand and
apply. Upstream authors won't accept patches against reformatted code. Bugfixes and patches against
the upstream code won't apply. New versions of the upstream code can't be imported. Real changes get
hidden in the mass of reformatting.

No-one's favourite coding style is significantly better or worse than anyone else's so reformatting code
provides no advantage to oppose the disadvantages.

Format code consistently

VirtueMart Developer Manual

25

url(http://cvs.eng.demon.net/cvsweb.cgi)

Use the same coding style as the code you are editing. This is a corollary to the previous subsection. It is
easier for people reading the code if it uses consistent layout rules throughout, so when you are editing
someone else's code the code you add should be in the same style.

Tab settings

Tabs are four characters wide. This is also a corollary to the previous subsections. Although indentation
sizes vary greatly, tabs are almost universally eight characters, so using a different setting is liable to
cause confusion or even reformatting. A four character tab might suit your indentation style, but the rest
of the world will think your code is a mess.

Comments

Commit messages are not a substitute for comments, or vice versa. Comments should describe data
structures and why the code does what it does; commit messages should explain why code was changed.

CVS ident strings

Include CVS $Header$ strings in your code. This makes it easier for people to know which version of
a file they have and where it came from, so that they can usefully refer to the file's CVS history to find
out about bugs and fixes, etc.

If your repository is configured appropriately, use the custom tag instead of $Header$.

Importing code

Importing code is reasonably simple, but care must be taken because a careless import can make a mess
of the repository which may be really hard to fix.

Importing local code

The procedure is as follows:

1. Choose a location in the repository, $loc. This may be either in your own area under a directory
named by your username, or in a directory used to keep software related to a given service or func-
tion together. Try to keep the repository tidy.

2. Choose a vendor tag $v and a release tag $r. The vendor tag can be either your company name or
your username; the release tag can be something like "start" or "initial".

3. If this is a new project without existing files, then create an initial empty directory structure on your
workstation. If not, why didn't you import it earlier?

4. In the top directory of your project type cvs import $loc $v $r (filling in the variables
with the appropriate values) and then enter an appropriate commit message, e.g. "initial import of
my foo program which bars customers".

5. Change to the next directory up, move the original project to a place where the checkout won't in-
terfere with it, and "cvs checkout" the CVSed version of the project. If all is well you should
now have two identical copies of your project, modulo CVS directories, etc. The old copy can be
deleted, and the new version becomes your working copy.

6. Add an entry for your project to the modules file, unless it's a new part of a bigger project.

Importing upstream code

VirtueMart Developer Manual

26

The procedure here is basically the same as the one described in the previous section, but you must con-
sider the following points:

1. Beware upstream code that came from a CVS repository itself. You will probably want to examine
any .cvsignore files since they will usually list generated files such as configure scripts
which are part of the release tarball but which are not wanted in the upstream CVS repository. You
probably want to import everything in the release tarball so find . -name .cvsignore |
xargs rm files is usually the thing to do.

2. The vendor tag should be the vendor's real name, e.g. "ISC" for the distributors of bind and inn,
etc.

3. The release tag should be the name of the software and the version number; note that hyphens and
dots should be replaced by underscores. E.g. "virtuemart_1_0_0" or "inn_2_2".

4. The tags should be documented in the modules file.

5. The "cvs import" command is performed in the top directory of the unpacked upstream source
tarball. Sometimes software comes in separate tarballs (e.g. source and documentation) and these
should be unpacked into their own directories under a new top directory.

6. The commit message should also mention where the software came from, e.g. a URL like
<ftp://ftp.isc.org/isc/bind/src/8.2.1>.

Updating upstream code

Again the procedure is similar, but there are a couple of steps that must be added before and after the
main procedure:

1. Before importing the new upstream source, tag the locally modified version: in the top of your
working tree for the project type e.g. "cvs tag virtuemart_1_1_0_local" using the pre-
vious version number. Alternatively you can use a tag like before_virtuemart_1_0_0. This
makes it easy to retrieve this version of the code in the future. Ensure the tag is documented in the
modules file.

2. Import the new upstream version as above. The tarball is unpacked into a new directory tree and
imported from there. The vendor tag must be the same as before, the release tag should reflect the
new version number, and the commit message needn't mention the distribution site unless it has
changed.

3. After importing you will probably have to resolve conflicts; most of the ones created by the import
can be resolved by CVS automatically, but there may be conflicts caused by local modifications
that must be resolved manually. CVS will tell you the command to run to resolve the conflicts; as
before care should be taken to avoid mixing up the pristine upstream source, your old working di-
rectory, and the newly checked out source, by moving directories that may be overwritten out of the
way.

4. After CVS has resolved what conflicts it can, fix any remaining ones. They can be found in the
code marked with lines containing "<<<<", "====", ">>>>". Having done this, check in the up-
dated code. A simple commit message like "resolve import conflicts" is fine.

5. If you used the before_ style of tag in the first step above then you might also want to add a
post-import tag at this point, e.g. after_virtuemart_1_1_0.

VirtueMart Developer Manual

27

Handling tricky situations

Because of limitations in CVS certain tasks are inherently difficult, particularly recovering from mis-
takes. Although changing the repository directly is nearly always a Really Bad Idea sometimes it cannot
be avoided. These guidelines explain what to do in these situations.

Creating directories

Use `cvs import` to create new top-level directories. i.e. follow the relevant parts of section 5.1
[http://dotat.at/writing/cvs-guidelines.html#import.local] to add a directory to the repository. Subdirecto-
ries of existing directories can be added by creating them in your working directory and then using cvs
add - the directory will be created immediately so you don't need to do a cvs commit aas well.

"Whoops! I checked in the wrong thing!"

Once a change has been committed you cannot un-commit it. You have to reverse the change and check
in a new revision with the old code.

Sometimes you might have a number of changes in your working copy which should be committed sep-
arately but accidentally get committed all at once with a commit message that's only appropriate to one
of the changes. The safe thing to do is revert the inadvertent commits then re-commit them with the right
message; editing the repository directly is possible but foolishly dangerous.

"Whoops! I cocked up a cvs import!"

Getting an import right is important because it affects the long-term usefulness of the repository. Check
import commands particularly carefully before running them!

If you do make a mistake, the solution depends on exactly what went wrong. You might have run the
command in the wrong working directory, or you might have used the wrong repository path, etc. The
important point is whether the imported files coincide with files in the repository or not.

1. If none of the files in the erroneous import have the same name as an existing file in the repository
(e.g. they all ended up in a completely new directory) then just removing the files from the reposi-
tory can be done by using the appropriate rm command in the repository.

2. If the import is OK apart from an incorrect tag, the tag can probably be deleted and re-applied cor-
rectly without too much pain. (This may not be true for a misspelled vendor branch tag.)

3. If there is a filename clash with an unrelated file, then there's a fairly serious problem. Find a CVS
guru and help him or her to fix the repository manually. You won't be popular.

Renaming files

There is one situation where the best practice requires changing the repository manually, and that is
when moving a file. The aim is to keep the full history with the file in its new location, but still allow old
checkouts to work as expected. The procedure is:

1. Log in to the CVS server and copy the appropriate ",v" file from the old location to the new loat-
ion.

2. In your working copy of the code do a cvs update; you will now have two copies of the file in
the old and new locations.

3. Delete the file from its old location, cvs rm it and check in the change. It'll move into the Attic

VirtueMart Developer Manual

28

url(http://dotat.at/writing/cvs-guidelines.html#import.local)

in the repository.

4. Delete all the tags from the new version of the file with cvs tag -d. This allows checkouts of
old tagged versions of the module to work without introducing spurious files. Checkouts based on
dates may still not work quite right, but they shouldn't be necessary if the module has been tagged
properly.

Undeleting files

If you have removed a file from recent versions of the source tree but decide that it needs to be restored,
then you can use the following procedure. It is just an elaboration on the theme of cvs add $file;
cvs ci $file.

1. Find the penultimate revision of the file by using cvs status $file and subtracting one from
the revision number.

2. Retrieve the last version of the file by using cvs up -p -r $rev $file > $file.

3. Edit the file, if necessary.

4. Re-add the file to the repository and check it in, with cvs add $file; cvs ci $file.

Database
Changes to the main db schema require a that an upgrade patch is posted as well. Your change will be
backed out if you don't provide a patch as well.

Changelog!

First of all you need to make an entry in the Changelog, including the SQL Queries to update a database
scheme.

SQL Update File

All changes to the database scheme are collected in an SQL file. There's a file for each minor version
jump, e.g.

UPDATE-SCRIPT_com_virtuemart_1.0.x-to-1.1.0.sql

The file can be found in the subdirectory /sql.

A user must see which version of VirtueMart this SQL patch file applies to and to which version it up-
dates the db scheme.

In this case the SQL file would update a db scheme from version

VirtueMart 1.0.x to 1.1.0

About the Project

VirtueMart Developer Manual

29

CVS Access

VirtueMart Source Code

This project has its CVS repository on the sourceforge.net CVS Server. You can checkout the module
VirtueMart from cvs.sourceforge.net. In order to obtain the source anonymously (read only) you
need to know the following:

Connection Type: pserver
CVS Server: cvs.sourceforge.net
CVSROOT: /cvsroot/virtuemart
Module Name: virtuemart
User: anonymous (no password required)

Warning

The CVS server is case-sensitive. Fill in the details in your CVS Program (e.g.
www.tortoisecvs.org [http://www.tortoisecvs.org] for Windows) just as they are provided here.

Documentation Sources

The VirtueMart Project manages its documentation in the DocBook format. You can checkout the
sources in the DocBook format and transform the DocBook source using an XSL Transformer into PDF,
HTML, CHM or whatever else... All you have to do is checkout the module documentation from
cvs.sourceforge.net.

Connection Type: pserver
CVS Server: cvs.sourceforge.net
CVSROOT: /cvsroot/virtuemart
Module Name: documentation
User: anonymous (no password required)

Warning

The CVS server is case-sensitive. Fill in the details in your CVS Program (e.g.
www.tortoisecvs.org [http://www.tortoisecvs.org] for Windows) just as they are provided here.

Documentation
This documentation was written using XMLMind XML Editor [http://www.xmlmind.com/xmleditor]
using the DocBook [http://www.docbook.org] XML Format.

DocBook defines a set of markup elements useful for marking up text so that the text can then be trans-
formed into several different formats. It's possible to create documents in different formats: PDF,
HTML, HTML Help (.chm Files for Windows Help), XML, RTF, TeX, WordML (Word 2003) and oth-
ers. The author of this document uses eDE [http://docbook.e-novative.de/] for generating the End-User
documents. The idea is to write just once and reach the largest possible number of people with the infor-
mation. Digital information not stored properly tends to get lost. Due to the fact that not containing un-
common characters (such as binary formats) it's possible to index and search directly on the documents
written on SGML and consequently on DocBook. The SGML systems use markups to make their de-
scription. DocBook holds over 300 markup elements each one with several attributes which can assume
several values, these can be fixed or defined by the document / style that the author has used.

Homepage, Forum

VirtueMart Developer Manual

30

url(http://www.tortoisecvs.org)
url(http://www.tortoisecvs.org)
url(http://www.xmlmind.com/xmleditor)
url(http://www.docbook.org)
url(http://docbook.e-novative.de/)

The project homepage is http://virtuemart.net.

There we also have a forum and you are invited to join our developer board!

VirtueMart Developer Manual

31

url(http://virtuemart.net)

